Relic coastal landforms (fossil corals, cemented intertidal deposits, or erosive features carved onto rock coasts) serve as sea-level index points (SLIPs), that are widely used to reconstruct past sea-level changes. Traditional SLIP-based sea-level reconstructions face challenges in capturing continuous sea-level variability and dating erosional SLIPs, such as tidal notches. Here, we propose a novel approach to such challenges. We use a numerical model of cliff erosion embedded within a Monte Carlo simulation to investigate the most likely sea-level scenarios responsible for shaping one of the best-preserved tidal notches of Last Interglacial age in Sardinia, Italy. Results align with Glacial Isostatic Adjustment model predictions, indicating that synchronized or out-of-sync ice-volume shifts in Antarctic and Greenland ice sheets can reproduce the notch morphology, with sea level confidently peaking at 6 m and only under a higher than present erosion regime. This new approach yields insight into sea-level trends during the Last Interglacial.
Decoding the Interplay Between Tidal Notch Geometry and Sea‐Level Variability During the Last Interglacial (Marine Isotope Stage 5e) High Stand
Georgiou, N.
;Casella, E.;Rovere, A.
2024-01-01
Abstract
Relic coastal landforms (fossil corals, cemented intertidal deposits, or erosive features carved onto rock coasts) serve as sea-level index points (SLIPs), that are widely used to reconstruct past sea-level changes. Traditional SLIP-based sea-level reconstructions face challenges in capturing continuous sea-level variability and dating erosional SLIPs, such as tidal notches. Here, we propose a novel approach to such challenges. We use a numerical model of cliff erosion embedded within a Monte Carlo simulation to investigate the most likely sea-level scenarios responsible for shaping one of the best-preserved tidal notches of Last Interglacial age in Sardinia, Italy. Results align with Glacial Isostatic Adjustment model predictions, indicating that synchronized or out-of-sync ice-volume shifts in Antarctic and Greenland ice sheets can reproduce the notch morphology, with sea level confidently peaking at 6 m and only under a higher than present erosion regime. This new approach yields insight into sea-level trends during the Last Interglacial.File | Dimensione | Formato | |
---|---|---|---|
Geophysical Research Letters - 2024 - Georgiou - Decoding the Interplay Between Tidal Notch Geometry and Sea%E2%80%90Level.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.