Climate change influences the frequency of extreme events that affect both human and natural systems. It requires systemic climate change adaptation to address the complexity of risks across multiple domains and tackle the uncertainties of future scenarios. This paper introduces a multirisk analysis of climate hazard, exposure, vulnerability, and risk severity, specifically designed to hotspot geographic locations and prioritize system receptors that are affected by climate-related extremes. The analysis is demonstrated for the Metropolitan City of Venice. Representative scenarios (RCP4.5 and RCP8.5) of climate threats (i.e., storm surges, pluvial flood, heat waves, and drought) are selected and represented by projections of Regional Climate Models for a 30-year period (2021-2050). A sample of results is as follows. First, an increase in the risk is largely due to drought, pluvial flood, and storm surge, depending on the areas of interest, with the overall situation worsening under the RCP8.5 scenario. Second, particular locations have colocated vulnerable receptors at higher risk, concentrated in the urban centers (e.g., housing, railways, roads) and along the coast (e.g., beaches, wetlands, primary sector). Third, risk communication of potential environmental and socio-economic losses via the multirisk maps is useful to stakeholders and public administration. Fourth, the multirisk maps recommend priorities for future investigation and risk management, such as collection of sensor data, elaboration of mitigations, and adaptation plans at hotspot locations.

Framework for multirisk climate scenarios across system receptors with application to the Metropolitan City of Venice

Sambo, Beatrice;Bonato, Marta;Sperotto, Anna;Torresan, Silvia;Furlan, Elisa;Critto, Andrea
2023-01-01

Abstract

Climate change influences the frequency of extreme events that affect both human and natural systems. It requires systemic climate change adaptation to address the complexity of risks across multiple domains and tackle the uncertainties of future scenarios. This paper introduces a multirisk analysis of climate hazard, exposure, vulnerability, and risk severity, specifically designed to hotspot geographic locations and prioritize system receptors that are affected by climate-related extremes. The analysis is demonstrated for the Metropolitan City of Venice. Representative scenarios (RCP4.5 and RCP8.5) of climate threats (i.e., storm surges, pluvial flood, heat waves, and drought) are selected and represented by projections of Regional Climate Models for a 30-year period (2021-2050). A sample of results is as follows. First, an increase in the risk is largely due to drought, pluvial flood, and storm surge, depending on the areas of interest, with the overall situation worsening under the RCP8.5 scenario. Second, particular locations have colocated vulnerable receptors at higher risk, concentrated in the urban centers (e.g., housing, railways, roads) and along the coast (e.g., beaches, wetlands, primary sector). Third, risk communication of potential environmental and socio-economic losses via the multirisk maps is useful to stakeholders and public administration. Fourth, the multirisk maps recommend priorities for future investigation and risk management, such as collection of sensor data, elaboration of mitigations, and adaptation plans at hotspot locations.
2023
43
File in questo prodotto:
File Dimensione Formato  
Risk Analysis - 2023 - Sambo - Framework for multirisk climate scenarios across system receptors with application to the (1).pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5049385
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact