In recent decades, a new generation of “green indoor” spaces has fulfilled the latest regulations and guidelines for a carbon-neutral society. Their targets are reachable through certifications embracing sets of measures and the adverse effects on occupants. Notwithstanding this, it has constituted a significant step forward in building design. However, the challenges given by climate change and the ecological crises lead to the need for new disruptive approaches to indoor design and function, enhancing human health and adopting regenerative design” at the forefront of buildings’ conception. Besides the positive energyperformance attributes, the creation of a Regenerative Indoor Environment utilizes appropriate construction technologies and systems, to reinforce human health, and enhance users’ experience. This regenerative paradigm shift foresees putting ecosystems at the centre and the users’ psycho-physiological wellbeing, thus magnifying their collaboration. Despite regenerative design gaining some attention, a framework towards its implementation promoting the actual performances of the indoor environment is still missing, and designers do navigate among guidelines with no apparent performance indicators to be achieved, technologies to be implemented, or methodologies for postoccupancy evaluations. These three levels, constituting a stepwise methodology, are addressed by the authors within the sections of this paper, and validated as an example of the office buildings’ typology. i) What characterizes a Regenerative Indoor Environment? ii) What technical solutions underpin the realization of a Regenerative Indoor Environment? iii) What methods or standards are crucial for its evaluation? With these premises, the paper contributes to supporting the creation of a regenerative indoor’ design, by sampling and outlining regenerative indoor performances to be obtained, describing the adequate tools to implement them, as well as by displaying approaches and solutions for their final verification.

A framework to support the design of a regenerative indoor environment

Pistore, Lorenza
;
Pasut, Wilmer;
2023-01-01

Abstract

In recent decades, a new generation of “green indoor” spaces has fulfilled the latest regulations and guidelines for a carbon-neutral society. Their targets are reachable through certifications embracing sets of measures and the adverse effects on occupants. Notwithstanding this, it has constituted a significant step forward in building design. However, the challenges given by climate change and the ecological crises lead to the need for new disruptive approaches to indoor design and function, enhancing human health and adopting regenerative design” at the forefront of buildings’ conception. Besides the positive energyperformance attributes, the creation of a Regenerative Indoor Environment utilizes appropriate construction technologies and systems, to reinforce human health, and enhance users’ experience. This regenerative paradigm shift foresees putting ecosystems at the centre and the users’ psycho-physiological wellbeing, thus magnifying their collaboration. Despite regenerative design gaining some attention, a framework towards its implementation promoting the actual performances of the indoor environment is still missing, and designers do navigate among guidelines with no apparent performance indicators to be achieved, technologies to be implemented, or methodologies for postoccupancy evaluations. These three levels, constituting a stepwise methodology, are addressed by the authors within the sections of this paper, and validated as an example of the office buildings’ typology. i) What characterizes a Regenerative Indoor Environment? ii) What technical solutions underpin the realization of a Regenerative Indoor Environment? iii) What methods or standards are crucial for its evaluation? With these premises, the paper contributes to supporting the creation of a regenerative indoor’ design, by sampling and outlining regenerative indoor performances to be obtained, describing the adequate tools to implement them, as well as by displaying approaches and solutions for their final verification.
File in questo prodotto:
File Dimensione Formato  
fbuil-09-1225024.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 898.24 kB
Formato Adobe PDF
898.24 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5046362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact