We discuss techniques of estimation and inference for nonstationary nonlinear cohort panels with learning from experience, showing, inter alia, the consistency and asymptotic normality of the nonlinear least squares estimator used in empirical practice. Potential pitfalls for hypothesis testing are identified and solutions proposed. Monte Carlo simulations verify the properties of the estimator and corresponding test statistics in finite samples, while an application to a panel of survey expectations demonstrates the usefulness of the theory developed.
Least squares estimation in nonstationary nonlinear cohort panels with learning from experience
Alexander Mayer
;
In corso di stampa
Abstract
We discuss techniques of estimation and inference for nonstationary nonlinear cohort panels with learning from experience, showing, inter alia, the consistency and asymptotic normality of the nonlinear least squares estimator used in empirical practice. Potential pitfalls for hypothesis testing are identified and solutions proposed. Monte Carlo simulations verify the properties of the estimator and corresponding test statistics in finite samples, while an application to a panel of survey expectations demonstrates the usefulness of the theory developed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



