The cause, or causes, of the Pleistocene megafaunal extinctions have been difficult to establish, in part because poor spatiotemporal resolution in the fossil record hinders alignment of species disappearances with archeological and environmental data. We obtained 172 new radiocarbon dates on megafauna from Rancho La Brea in California spanning 15.6 to 10.0 thousand calendar years before present (ka). Seven species of extinct megafauna disappeared by 12.9 ka, before the onset of the Younger Dryas. Comparison with high-resolution regional datasets revealed that these disappearances coincided with an ecological state shift that followed aridification and vegetation changes during the Bølling-Allerød (14.69 to 12.89 ka). Time-series modeling implicates large-scale fires as the primary cause of the extirpations, and the catalyst of this state shift may have been mounting human impacts in a drying, warming, and increasingly fire-prone ecosystem.

Pre–Younger Dryas megafaunal extirpation at Rancho La Brea linked to fire-driven state shift

Ghezzo E.
Investigation
;
Davis E. B.
Membro del Collaboration Group
;
2023-01-01

Abstract

The cause, or causes, of the Pleistocene megafaunal extinctions have been difficult to establish, in part because poor spatiotemporal resolution in the fossil record hinders alignment of species disappearances with archeological and environmental data. We obtained 172 new radiocarbon dates on megafauna from Rancho La Brea in California spanning 15.6 to 10.0 thousand calendar years before present (ka). Seven species of extinct megafauna disappeared by 12.9 ka, before the onset of the Younger Dryas. Comparison with high-resolution regional datasets revealed that these disappearances coincided with an ecological state shift that followed aridification and vegetation changes during the Bølling-Allerød (14.69 to 12.89 ka). Time-series modeling implicates large-scale fires as the primary cause of the extirpations, and the catalyst of this state shift may have been mounting human impacts in a drying, warming, and increasingly fire-prone ecosystem.
2023
381
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5036210
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact