Over the past 20 years, a number of regulatory efforts have been applied to improve air quality in the United States and specifically in New York State. These measures generally focused on mobile emissions through emissions controls and improved fuel quality, and controls on electricity generation to reduce emissions from older, uncontrolled electricity generation units (EGUs). In addition, economic drivers such as the major recession in 2007–2009 and the change in the relative costs of natural gas and coal also drove changes in the mixture of EGU technologies. To assess the effects of these changes and to define the baseline for future changes as the economy further decarbonizes through renewable electricity generation and electric vehicles, the concentrations of all pollutants measured at all regulatory monitoring sites in New York State were assessed for their trends. Trends were examined using seasonal-trend decomposition with local regression smoothing (STL), Mann-Kendall trend analysis with the Theil-Sen nonparametric slope estimation, and piecewise regression analysis to identify breakpoints in the slopes of the time series data. The concentrations of primary gaseous pollutants, CO, NO2, and SO2 have decreased substantially in step with the declining emissions. PM2.5 has substantially declined largely due to the reductions in particulate sulfate. However, in recent years, the rate of decline has diminished due to relatively constant or increasing particulate nitrate and secondary organic aerosol. O3 has also generally increased at the urban sites likely as a result of reduced NOx emissions, while it declined or remained constant at the rural sites. Thus, the promulgated regulations assisted by the economic drivers have improved air quality, but additional actions will be needed to further reduce urban O3 and PM2.5.

Changes in ambient air pollutants in New York State from 2005 to 2019: Effects of policy implementations and economic and technological changes

MASIOL M;
2023-01-01

Abstract

Over the past 20 years, a number of regulatory efforts have been applied to improve air quality in the United States and specifically in New York State. These measures generally focused on mobile emissions through emissions controls and improved fuel quality, and controls on electricity generation to reduce emissions from older, uncontrolled electricity generation units (EGUs). In addition, economic drivers such as the major recession in 2007–2009 and the change in the relative costs of natural gas and coal also drove changes in the mixture of EGU technologies. To assess the effects of these changes and to define the baseline for future changes as the economy further decarbonizes through renewable electricity generation and electric vehicles, the concentrations of all pollutants measured at all regulatory monitoring sites in New York State were assessed for their trends. Trends were examined using seasonal-trend decomposition with local regression smoothing (STL), Mann-Kendall trend analysis with the Theil-Sen nonparametric slope estimation, and piecewise regression analysis to identify breakpoints in the slopes of the time series data. The concentrations of primary gaseous pollutants, CO, NO2, and SO2 have decreased substantially in step with the declining emissions. PM2.5 has substantially declined largely due to the reductions in particulate sulfate. However, in recent years, the rate of decline has diminished due to relatively constant or increasing particulate nitrate and secondary organic aerosol. O3 has also generally increased at the urban sites likely as a result of reduced NOx emissions, while it declined or remained constant at the rural sites. Thus, the promulgated regulations assisted by the economic drivers have improved air quality, but additional actions will be needed to further reduce urban O3 and PM2.5.
File in questo prodotto:
File Dimensione Formato  
081 Chen et al 2023 [AE 311] NYS trend extended.pdf

accesso aperto

Descrizione: Final version: golden OA
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5032441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact