Given an undirected graph with integer edge lengths, we study the problem of approximating the distances in the graph by a spanning tree based on the notion of stretch. Our main contribution is a distributed algorithm in the CONGEST model of computation that constructs a random spanning tree with the guarantee that the expected stretch of every edge is O(log3 n), where n is the number of nodes in the graph. If the graph is unweighted, then this algorithm can be implemented to run in O(D) rounds, where D is the hop-diameter of the graph, thus being asymptotically optimal. In the weighted case, the run-time of our algorithm matches the currently best known bound for exact distance computations, i.e., Õ(min{√nD, √nD1/4 + n3/5 + D}). We stress that this is the first distributed construction of spanning trees leading to poly-logarithmic expected stretch with non-trivial running time.

Distributed algorithms for low stretch spanning trees

Becker R.;
2019-01-01

Abstract

Given an undirected graph with integer edge lengths, we study the problem of approximating the distances in the graph by a spanning tree based on the notion of stretch. Our main contribution is a distributed algorithm in the CONGEST model of computation that constructs a random spanning tree with the guarantee that the expected stretch of every edge is O(log3 n), where n is the number of nodes in the graph. If the graph is unweighted, then this algorithm can be implemented to run in O(D) rounds, where D is the hop-diameter of the graph, thus being asymptotically optimal. In the weighted case, the run-time of our algorithm matches the currently best known bound for exact distance computations, i.e., Õ(min{√nD, √nD1/4 + n3/5 + D}). We stress that this is the first distributed construction of spanning trees leading to poly-logarithmic expected stretch with non-trivial running time.
2019
Leibniz International Proceedings in Informatics, LIPIcs
File in questo prodotto:
File Dimensione Formato  
4_disc19.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 564.01 kB
Formato Adobe PDF
564.01 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5029572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact