Progress in key social-ecological challenges of the global environmental agenda (e.g., climate change, biodiversity conservation, Sustainable Development Goals) is hampered by a lack of integration and synthesis of existing scientific evidence. Facing a fast-increasing volume of data, information remains compartmentalized to pre-defined scales and fields, rarely building its way up to collective knowledge. Today's distributed corpus of human intelligence, including the scientific publication system, cannot be exploited with the efficiency needed to meet current evidence synthesis challenges; computer-based intelligence could assist this task. Artificial Intelligence (AI)-based approaches underlain by semantics and machine reasoning offer a constructive way forward, but depend on greater understanding of these technologies by the science and policy communities and coordination of their use. By labelling web-based scientific information to become readable by both humans and computers, machines can search, organize, reuse, combine and synthesize information quickly and in novel ways. Modern open science infrastructure-i.e., public data and model repositories-is a useful starting point, but without shared semantics and common standards for machine actionable data and models, our collective ability to build, grow, and share a collective knowledge base will remain limited. The application of semantic and machine reasoning technologies by a broad community of scientists and decision makers will favour open synthesis to contribute and reuse knowledge and apply it toward decision making.

The global environmental agenda urgently needs a semantic web of knowledge

Stefano Balbi;Carlo Giupponi;
2022-01-01

Abstract

Progress in key social-ecological challenges of the global environmental agenda (e.g., climate change, biodiversity conservation, Sustainable Development Goals) is hampered by a lack of integration and synthesis of existing scientific evidence. Facing a fast-increasing volume of data, information remains compartmentalized to pre-defined scales and fields, rarely building its way up to collective knowledge. Today's distributed corpus of human intelligence, including the scientific publication system, cannot be exploited with the efficiency needed to meet current evidence synthesis challenges; computer-based intelligence could assist this task. Artificial Intelligence (AI)-based approaches underlain by semantics and machine reasoning offer a constructive way forward, but depend on greater understanding of these technologies by the science and policy communities and coordination of their use. By labelling web-based scientific information to become readable by both humans and computers, machines can search, organize, reuse, combine and synthesize information quickly and in novel ways. Modern open science infrastructure-i.e., public data and model repositories-is a useful starting point, but without shared semantics and common standards for machine actionable data and models, our collective ability to build, grow, and share a collective knowledge base will remain limited. The application of semantic and machine reasoning technologies by a broad community of scientists and decision makers will favour open synthesis to contribute and reuse knowledge and apply it toward decision making.
2022
11
File in questo prodotto:
File Dimensione Formato  
Balbi et al 2022 Semantic Web of Knowledge.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 897.72 kB
Formato Adobe PDF
897.72 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5023700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact