This paper concerns a Multivariate Latent Markov Model recently introduced in the literature for estimating latent traits in social sciences. Based on its ability of simultaneously dealing with longitudinal and spacial data, the model is proposed when the latent response variable is expected to have a time and space dynamic of its own, as an innovative alternative to popular methodologies such as the construction of composite indicators and structural equation modeling. The potentials of the proposed model and the added value with respect to the traditional weighted composition methodology, are illustrated via an empirical Gender Statistics exercise, focused on gender gap as the latent status to be measured and based on supranational official statistics for 30 European countries in the period 2010-2015.

Measuring Latent Variables is space and/or time: A Gender Statistics exercise

Gaia Bertarelli;
2017-01-01

Abstract

This paper concerns a Multivariate Latent Markov Model recently introduced in the literature for estimating latent traits in social sciences. Based on its ability of simultaneously dealing with longitudinal and spacial data, the model is proposed when the latent response variable is expected to have a time and space dynamic of its own, as an innovative alternative to popular methodologies such as the construction of composite indicators and structural equation modeling. The potentials of the proposed model and the added value with respect to the traditional weighted composition methodology, are illustrated via an empirical Gender Statistics exercise, focused on gender gap as the latent status to be measured and based on supranational official statistics for 30 European countries in the period 2010-2015.
2017
Bertarelli G; Crippa F; Mecatti F
File in questo prodotto:
File Dimensione Formato  
proceeding 2017.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5023424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact