In this work, MnZn ferrite nanoparticles with hierarchical morphology were synthesized hydrothermally, and their surface characteristics were improved by the PEGylation process. In vitro MRI studies were also conducted to evaluate the ability of the synthesized nanoparticles as a contrast agent. All results were compared with those obtained for MnZn ferrite nanoparticles with normal structure. Microstructural evaluations showed that in ferrite with hierarchical morphology, the spherical particles with an average size of similar to 20 nm made a distinctive structure consisting of rows of nanoparticles which is a relatively big assembly like a dandelion. The smaller particle size and dandelion-like morphology led to an increase in specific surface area for the hierarchical structure (similar to 69 m(2)/g) in comparison to the normal one (similar to 30 m(2)/g) with an average particle size of similar to 40 nm. In vitro MRI, cytotoxicity and hemocompatibility assays confirmed the PEG-coated MnZn ferrite nanoparticles with hierarchical structure synthesized in the current study can be considered as an MRI contrast agent.

PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent

Cheraghali, Sedigheh;Back, Michele
;
Rizzolio, Flavio
2023-01-01

Abstract

In this work, MnZn ferrite nanoparticles with hierarchical morphology were synthesized hydrothermally, and their surface characteristics were improved by the PEGylation process. In vitro MRI studies were also conducted to evaluate the ability of the synthesized nanoparticles as a contrast agent. All results were compared with those obtained for MnZn ferrite nanoparticles with normal structure. Microstructural evaluations showed that in ferrite with hierarchical morphology, the spherical particles with an average size of similar to 20 nm made a distinctive structure consisting of rows of nanoparticles which is a relatively big assembly like a dandelion. The smaller particle size and dandelion-like morphology led to an increase in specific surface area for the hierarchical structure (similar to 69 m(2)/g) in comparison to the normal one (similar to 30 m(2)/g) with an average particle size of similar to 40 nm. In vitro MRI, cytotoxicity and hemocompatibility assays confirmed the PEG-coated MnZn ferrite nanoparticles with hierarchical structure synthesized in the current study can be considered as an MRI contrast agent.
2023
13
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5021118
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact