NaBiF4 nanocrystalline particles were synthesized by means of a facile precipitation synthesis route to explore upconversion emission properties when doped with lanthanide ions. In particular, the incorporation of the Yb3+-Ho3+-Ce3+ triad with controlled ion concentration facilitates near-IR pumping conversion into visible light, with the possibility of color emission tuning depending on Ce3+ doping amount. We observed that introducing a Ce3+ content up to 20 at.% in NaBiF4:Yb3+/Ho3+, the chromaticity progressively turns from green for the Ce3+ undoped system to red. This is due to cross-relaxation mechanisms between Ho3+ and Ce3+ ions that influence the relative efficiency of the overall upconversion pathways, as discussed on the basis of a theoretical rate equation model. Furthermore, experimental results suggest that the photoexcitation of intra-4f Ho3+ transitions with light near the UV-visible edge can promote downconverted Yb3+ near-IR emission through quantum cutting triggered by Ho3+-Yb3+ energy transfer mechanisms. The present study evidences the potentiality of the developed NaBiF4 particles for applications that exploit lanthanide-based light frequency conversion and multicolor emission tuning.

Light Conversion upon Photoexcitation of NaBiF4:Yb3+/Ho3+/Ce3+ Nanocrystalline Particles

Trave, Enrico;Back, Michele;Ambrosi, Emmanuele;Puppulin, Leonardo
2023-01-01

Abstract

NaBiF4 nanocrystalline particles were synthesized by means of a facile precipitation synthesis route to explore upconversion emission properties when doped with lanthanide ions. In particular, the incorporation of the Yb3+-Ho3+-Ce3+ triad with controlled ion concentration facilitates near-IR pumping conversion into visible light, with the possibility of color emission tuning depending on Ce3+ doping amount. We observed that introducing a Ce3+ content up to 20 at.% in NaBiF4:Yb3+/Ho3+, the chromaticity progressively turns from green for the Ce3+ undoped system to red. This is due to cross-relaxation mechanisms between Ho3+ and Ce3+ ions that influence the relative efficiency of the overall upconversion pathways, as discussed on the basis of a theoretical rate equation model. Furthermore, experimental results suggest that the photoexcitation of intra-4f Ho3+ transitions with light near the UV-visible edge can promote downconverted Yb3+ near-IR emission through quantum cutting triggered by Ho3+-Yb3+ energy transfer mechanisms. The present study evidences the potentiality of the developed NaBiF4 particles for applications that exploit lanthanide-based light frequency conversion and multicolor emission tuning.
2023
13
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5018769
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact