Two short-term (two and nine months) retrieved zirconia-toughened alumina (ZTA) femoral heads and nine pristine femoral heads from the same manufacturer have been investigated with respect to their surface stability by means of confocal Raman spectroscopy. Quantitative estimations of monoclinic volume fraction have been carried out in both non-wear and main wear zones of the retrieved heads, which invariantly showed high volume fractions of monoclinic polymorph. In-depth (sub-surface) profiles, non-destructively collected in the main wear zones with the Raman probe in confocal configuration, indeed confirmed that polymorphic transformation was extended down to 100 mu m below the bearing surface of the femoral heads. Acceleration of tetragonal-to-monoclinic transformation rate leads to unexpectedly high fractions of monoclinic phase within very short-term in-vivo exposures. Phase transformation in-vivo is much more marked than what one could actually predict according to simply simulating a hydrothermal environment in-vitro and could not be simply ascribed to the mechanical stress fields generated during normal service at the bearing surface. Instead, the chemical consequences of metal contamination on the ZTA femoral head surface are shown to play the most detrimental role in phase destabilization. (C) 2015 Elsevier Ltd. All rights reserved.

Chemically driven tetragonal-to-monoclinic polymorphic transformation in retrieved ZTA femoral heads from dual mobility hip implants

Boffelli, M;Puppulin, L;Pezzotti, G
2016-01-01

Abstract

Two short-term (two and nine months) retrieved zirconia-toughened alumina (ZTA) femoral heads and nine pristine femoral heads from the same manufacturer have been investigated with respect to their surface stability by means of confocal Raman spectroscopy. Quantitative estimations of monoclinic volume fraction have been carried out in both non-wear and main wear zones of the retrieved heads, which invariantly showed high volume fractions of monoclinic polymorph. In-depth (sub-surface) profiles, non-destructively collected in the main wear zones with the Raman probe in confocal configuration, indeed confirmed that polymorphic transformation was extended down to 100 mu m below the bearing surface of the femoral heads. Acceleration of tetragonal-to-monoclinic transformation rate leads to unexpectedly high fractions of monoclinic phase within very short-term in-vivo exposures. Phase transformation in-vivo is much more marked than what one could actually predict according to simply simulating a hydrothermal environment in-vitro and could not be simply ascribed to the mechanical stress fields generated during normal service at the bearing surface. Instead, the chemical consequences of metal contamination on the ZTA femoral head surface are shown to play the most detrimental role in phase destabilization. (C) 2015 Elsevier Ltd. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5018761
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact