In recent years, the exponential growth of digital documents has been met by rapid progress in text classification techniques. Newly proposed machine learning algorithms leverage the latest advancements in deep learning methods, allowing for the automatic extraction of expressive features. The swift development of these methods has led to a plethora of strategies to encode natural language into machine-interpretable data. The latest language modelling algorithms are used in conjunction with ad hoc preprocessing procedures, of which the description is often omitted in favour of a more detailed explanation of the classification step. This paper offers a concise review of recent text classification models, with emphasis on the flow of data, from raw text to output labels. We highlight the differences between earlier methods and more recent, deep learning-based methods in both their functioning and in how they transform input data. To give a better perspective on the text classification landscape, we provide an overview of datasets for the English language, as well as supplying instructions for the synthesis of two new multilabel datasets, which we found to be particularly scarce in this setting. Finally, we provide an outline of new experimental results and discuss the open research challenges posed by deep learning-based language models.

A Survey on Text Classification Algorithms: From Text to Predictions

Gasparetto, A
Writing – Review & Editing
;
Marcuzzo, M
Writing – Original Draft Preparation
;
Zangari, A
Writing – Original Draft Preparation
;
Albarelli, A
Supervision
2022-01-01

Abstract

In recent years, the exponential growth of digital documents has been met by rapid progress in text classification techniques. Newly proposed machine learning algorithms leverage the latest advancements in deep learning methods, allowing for the automatic extraction of expressive features. The swift development of these methods has led to a plethora of strategies to encode natural language into machine-interpretable data. The latest language modelling algorithms are used in conjunction with ad hoc preprocessing procedures, of which the description is often omitted in favour of a more detailed explanation of the classification step. This paper offers a concise review of recent text classification models, with emphasis on the flow of data, from raw text to output labels. We highlight the differences between earlier methods and more recent, deep learning-based methods in both their functioning and in how they transform input data. To give a better perspective on the text classification landscape, we provide an overview of datasets for the English language, as well as supplying instructions for the synthesis of two new multilabel datasets, which we found to be particularly scarce in this setting. Finally, we provide an outline of new experimental results and discuss the open research challenges posed by deep learning-based language models.
2022
13
File in questo prodotto:
File Dimensione Formato  
information-13-00083-v2.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 793.93 kB
Formato Adobe PDF
793.93 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5017704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 23
social impact