Several methods have been devised to mitigate the effects of outlier values on survey estimates. If outliers are a concern for estimation of population quantities, it is even more necessary to pay attention to them in a small area estimation (SAE) context, where sample size is usually very small and the estimation in often model based. In this paper we set two goals: The first is to review recent developments in outlier robust SAE. In particular, we focus on the use of partial bias corrections when outlier robust fitted values under a working model generate biased predictions from sample data containing representative outliers. Then we propose an outlier robust bootstrap MSE estimator for M-quantile based small area predictors which considers a bounded-block-bootstrap approach. We illustrate these methods through model based and design based simulations and in the context of a particular survey data set that has many of the outlier characteristics that are observed in business surveys.

Outlier robust small domain estimation via bias correction and robust bootstrapping

Bertarelli G.;
2021-01-01

Abstract

Several methods have been devised to mitigate the effects of outlier values on survey estimates. If outliers are a concern for estimation of population quantities, it is even more necessary to pay attention to them in a small area estimation (SAE) context, where sample size is usually very small and the estimation in often model based. In this paper we set two goals: The first is to review recent developments in outlier robust SAE. In particular, we focus on the use of partial bias corrections when outlier robust fitted values under a working model generate biased predictions from sample data containing representative outliers. Then we propose an outlier robust bootstrap MSE estimator for M-quantile based small area predictors which considers a bounded-block-bootstrap approach. We illustrate these methods through model based and design based simulations and in the context of a particular survey data set that has many of the outlier characteristics that are observed in business surveys.
File in questo prodotto:
File Dimensione Formato  
Bertarelli2021_Article_OutlierRobustSmallDomainEstima.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 967.75 kB
Formato Adobe PDF
967.75 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5015265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact