In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper we develop a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 Population Census.

Small area estimation for unemployment using latent Markov models

Gaia Bertarelli;
2018-01-01

Abstract

In Italy, the Labor Force Survey (LFS) is conducted quarterly by the National Statistical Institute (ISTAT) to produce estimates of the labor force status of the population at different geographical levels. In particular, ISTAT provides LFS estimates of employed and unemployed counts for local Labor Market Areas (LMAs). LMAs are 611 sub-regional clusters of municipalities and are unplanned domains for which direct estimates have overly large sampling errors. This implies the need of Small Area Estimation (SAE) methods. In this paper we develop a new area level SAE method that uses a Latent Markov Model (LMM) as linking model. In LMMs, the characteristic of interest, and its evolution in time, is represented by a latent process that follows a Markov chain, usually of first order. Therefore, areas are allowed to change their latent state across time. The proposed model is applied to quarterly data from the LFS for the period 2004 to 2014 and fitted within a hierarchical Bayesian framework using a data augmentation Gibbs sampler. Estimates are compared with those obtained by the classical Fay-Herriot model, by a time-series area level SAE model, and on the basis of data coming from the 2011 Population Census.
2018
44
File in questo prodotto:
File Dimensione Formato  
54956-eng.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso libero (no vincoli)
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5015204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact