Electrochemical energy storage and conversion devices play a key role in the development of clean, sustainable, and efficient energy systems to meet the sustainable growth of our society. However, challenging issues including the sluggish kinetics of oxygen electrode reactions involving the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are present, limiting the implementation of devices such as metal-air batteries, water electrolyzers, and regenerative fuel cells. In this review, various monometallic and bimetallic transition metal oxides (TMOs) and hydroxides are summarized in terms of their application for ORR/OER, in which the merits and demerits of various precious metal and carbon-based metal oxide materials are discussed, with requirements for better electrocatalysts and catalyst support being introduced as well. Following this, different approaches to improve catalytic activity such as the introduction of doping and defects, the manipulation of crystal facets, and the engineering of supports, compositions, and morphologies are summarized in which TMOs with improved ORR/OER catalytic activities can be synthesized, further improving the speed, stability, and polarization of electrochemical energy storage and conversion devices. Finally, perspectives into the improvement of performance and the better understanding of ORR/OER mechanisms for bifunctional electrocatalysts using in situ spectroscopic techniques and density functional theory calculations are also discussed.

A review of transition metal-based bifunctional oxygen electrocatalysts

Ibrahim K. B.
Conceptualization
;
2019-01-01

Abstract

Electrochemical energy storage and conversion devices play a key role in the development of clean, sustainable, and efficient energy systems to meet the sustainable growth of our society. However, challenging issues including the sluggish kinetics of oxygen electrode reactions involving the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are present, limiting the implementation of devices such as metal-air batteries, water electrolyzers, and regenerative fuel cells. In this review, various monometallic and bimetallic transition metal oxides (TMOs) and hydroxides are summarized in terms of their application for ORR/OER, in which the merits and demerits of various precious metal and carbon-based metal oxide materials are discussed, with requirements for better electrocatalysts and catalyst support being introduced as well. Following this, different approaches to improve catalytic activity such as the introduction of doping and defects, the manipulation of crystal facets, and the engineering of supports, compositions, and morphologies are summarized in which TMOs with improved ORR/OER catalytic activities can be synthesized, further improving the speed, stability, and polarization of electrochemical energy storage and conversion devices. Finally, perspectives into the improvement of performance and the better understanding of ORR/OER mechanisms for bifunctional electrocatalysts using in situ spectroscopic techniques and density functional theory calculations are also discussed.
File in questo prodotto:
File Dimensione Formato  
J Chinese Chemical Soc - 2019 - Ibrahim - A review of transition metal‐based bifunctional oxygen electrocatalysts.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 18.18 MB
Formato Adobe PDF
18.18 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5013572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 73
social impact