Functional magnetic resonance imaging (fMRI) data require preprocessing steps before statistical analysis. Multi-subjects fMRI studies are complicated: the brain’s anatomical and functional structure varies across subjects. Anatomical alignment does not capture the functional variability across subjects; the functional alignment is then applied. Generally, group analysis on functionally aligned fMRI data refers to between-subject classification. We propose an inference group analysis arguing that using functional aligned images based on Procrustes transformation does not affect type I error.

Valid inference for group analysis of functionally aligned fMRI images

Andreella Angela
;
2022-01-01

Abstract

Functional magnetic resonance imaging (fMRI) data require preprocessing steps before statistical analysis. Multi-subjects fMRI studies are complicated: the brain’s anatomical and functional structure varies across subjects. Anatomical alignment does not capture the functional variability across subjects; the functional alignment is then applied. Generally, group analysis on functionally aligned fMRI data refers to between-subject classification. We propose an inference group analysis arguing that using functional aligned images based on Procrustes transformation does not affect type I error.
2022
Book of Short Papers SIS 202
File in questo prodotto:
File Dimensione Formato  
Sis-2022-4c-low-2015-2020.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso gratuito (solo visione)
Dimensione 214.74 kB
Formato Adobe PDF
214.74 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5012541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact