Methods to generate spin-polarized electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices. This is generally accepted to require breaking global structural inversion symmetry. In contrast, here we report the observation from spin- and angle-resolved photoemission spectroscopy of spin-polarized bulk states in the centrosymmetric transition-metal dichalcogenide WSe 2. Mediated by a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localized, we show how spin splittings up to 0.5 eV result, with a spin texture that is strongly modulated in both real and momentum space. Through this, our study provides direct experimental evidence for a putative locking of the spin with the layer and valley pseudospins in transition-metal dichalcogenides, of key importance for using these compounds in proposed valleytronic devices.
Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor
Mazzola F.;
2014-01-01
Abstract
Methods to generate spin-polarized electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices. This is generally accepted to require breaking global structural inversion symmetry. In contrast, here we report the observation from spin- and angle-resolved photoemission spectroscopy of spin-polarized bulk states in the centrosymmetric transition-metal dichalcogenide WSe 2. Mediated by a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localized, we show how spin splittings up to 0.5 eV result, with a spin texture that is strongly modulated in both real and momentum space. Through this, our study provides direct experimental evidence for a putative locking of the spin with the layer and valley pseudospins in transition-metal dichalcogenides, of key importance for using these compounds in proposed valleytronic devices.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.