One of the major challenges to establishing more sustainable management strategies than landfill disposal of metals-contaminated soils is the lack of End-of-Waste (EoW) criteria defined at the European and national levels. Another limitation stems from the scarcity of information on industrial-scale applications of treatment technologies able to obtain safe and reusable materials from such contaminated waste. In this context, the High-Performance Solidification/Stabilization process was applied for the full-scale remediation of pyrite ash-contaminated soil (ca. 24 000 m3), and a dedicated sampling and analytical protocol was developed and implemented to verify if the treated material obtained complied with the general EoW criteria established by article 6 of the Waste Framework Directive 2008/98/EC. The results of the leaching, ecotoxicological, and mechanical tests carried out on representative samples of the treated soil showed that this material (ca. 19 000 m3) could be classified as EoW and thus was deemed reusable both in-situ as filler for the excavation and ex-situ as road construction material. These results improve the knowledge of the performance of a state-of-the-art technique for the treatment of metals-contaminated soil. Furthermore, the developed monitoring plan can support future assessments on the compliance of materials obtained from contaminated soil with the general EoW criteria.

The validation of converting pyrite ash‐contaminated soil into End‐of‐Waste by the High‐Performance Solidification/Stabilization process application

Scanferla, Petra
;
Loris, Calgaro;Zambon, Martino;Marcomini, Antonio
2022-01-01

Abstract

One of the major challenges to establishing more sustainable management strategies than landfill disposal of metals-contaminated soils is the lack of End-of-Waste (EoW) criteria defined at the European and national levels. Another limitation stems from the scarcity of information on industrial-scale applications of treatment technologies able to obtain safe and reusable materials from such contaminated waste. In this context, the High-Performance Solidification/Stabilization process was applied for the full-scale remediation of pyrite ash-contaminated soil (ca. 24 000 m3), and a dedicated sampling and analytical protocol was developed and implemented to verify if the treated material obtained complied with the general EoW criteria established by article 6 of the Waste Framework Directive 2008/98/EC. The results of the leaching, ecotoxicological, and mechanical tests carried out on representative samples of the treated soil showed that this material (ca. 19 000 m3) could be classified as EoW and thus was deemed reusable both in-situ as filler for the excavation and ex-situ as road construction material. These results improve the knowledge of the performance of a state-of-the-art technique for the treatment of metals-contaminated soil. Furthermore, the developed monitoring plan can support future assessments on the compliance of materials obtained from contaminated soil with the general EoW criteria.
File in questo prodotto:
File Dimensione Formato  
The validation of converting pyrite ashes contaminated soils into End‐of‐Waste by High‐Performance Solidification_Stabilization process application.pdf

embargo fino al 01/12/2023

Tipologia: Documento in Pre-print
Licenza: Accesso gratuito (solo visione)
Dimensione 9.89 MB
Formato Adobe PDF
9.89 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5009340
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact