The one-pot alkoxycarbonylation of halo-free alkylaryl and furanyl alcohols represents a sustainable alternative for the synthesis of alkylaryl and furanyl acetates. In this paper, the reaction between benzyl alcohol, chosen as a model substrate, CH3OH and CO was tested in the presence of a homogeneous palladium catalyst, an activator (isopropenyl acetate (IPAc) or dimethyl carbonate (DMC)) and a base (Cs2CO3). The influence of various reaction parameters such as the CO pressure, ligand and palladium precursor employed, mmol% catalyst load, temperature and time were investigated. The results demonstrate that decreasing the CO pressure from 50 bar to 5 bar at 130 °C for 18 h increases yields in benzyl acetate from 36% to over 98%. Further experiments were performed in the presence of piperonyl and furfuryl alcohol, interesting substrates employed for the synthesis of various fine chemicals. Moreover, furfuryl alcohol is a lignocellulosic-derived building block employed for the synthesis of functionalized furans such as 2-alkylfurfuryl acetates. Both the alcohols were successfully transformed in the corresponding acetate (yields above 96%) in rather mild reaction conditions (5–0.01 mol% catalyst, 5–2 bar CO pressure, 130 °C, 4–18h), demonstrating that the alkoxycarbonylation of alcohols represents a promising sustainable alternative to more impactful industrial practices adopted to date for the synthesis of alkylaryl and furfuryl acetates.

Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols

valentina beghetto
;
stefano paganelli;roberto sole;cappellazzo jacopo;scalchi leonardo
2022-01-01

Abstract

The one-pot alkoxycarbonylation of halo-free alkylaryl and furanyl alcohols represents a sustainable alternative for the synthesis of alkylaryl and furanyl acetates. In this paper, the reaction between benzyl alcohol, chosen as a model substrate, CH3OH and CO was tested in the presence of a homogeneous palladium catalyst, an activator (isopropenyl acetate (IPAc) or dimethyl carbonate (DMC)) and a base (Cs2CO3). The influence of various reaction parameters such as the CO pressure, ligand and palladium precursor employed, mmol% catalyst load, temperature and time were investigated. The results demonstrate that decreasing the CO pressure from 50 bar to 5 bar at 130 °C for 18 h increases yields in benzyl acetate from 36% to over 98%. Further experiments were performed in the presence of piperonyl and furfuryl alcohol, interesting substrates employed for the synthesis of various fine chemicals. Moreover, furfuryl alcohol is a lignocellulosic-derived building block employed for the synthesis of functionalized furans such as 2-alkylfurfuryl acetates. Both the alcohols were successfully transformed in the corresponding acetate (yields above 96%) in rather mild reaction conditions (5–0.01 mol% catalyst, 5–2 bar CO pressure, 130 °C, 4–18h), demonstrating that the alkoxycarbonylation of alcohols represents a promising sustainable alternative to more impactful industrial practices adopted to date for the synthesis of alkylaryl and furfuryl acetates.
2022
12
File in questo prodotto:
File Dimensione Formato  
catalysts-12-00883-v2-1.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5007141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact