Contextual embeddings build multidimensional representations of word tokens based on their context of occurrence. Such models have been shown to achieve a state-of-the-art performance on a wide variety of tasks. Yet, the community struggles in understanding what kind of semantic knowledge these representations encode. We report a series of experiments aimed at investigating to what extent one of such models, BERT, is able to infer the semantic relations that, according to Dowty’s Proto-Roles theory, a verbal argument receives by virtue of its role in the event described by the verb. This hypothesis were put to test by learning a linear mapping from the BERT’s verb embeddings to an interpretable space of semantic properties built from the linguistic dataset by White et al. (2016). In a first experiment we tested whether the semantic properties inferred from a typed version of the BERT embeddings would be more linguistically plausible than those produced by relying on static embeddings. We then move to evaluate the semantic properties inferred from the contextual embeddings both against those available in the original dataset, as well as by assessing their ability to model the semantic properties possessed by the agent of the verbs participating in the so-called causative alternation.

Does BERT Recognize an Agent? Modeling Dowty's Proto-Roles with Contextual Embeddings

Gianluca Lebani;
2022-01-01

Abstract

Contextual embeddings build multidimensional representations of word tokens based on their context of occurrence. Such models have been shown to achieve a state-of-the-art performance on a wide variety of tasks. Yet, the community struggles in understanding what kind of semantic knowledge these representations encode. We report a series of experiments aimed at investigating to what extent one of such models, BERT, is able to infer the semantic relations that, according to Dowty’s Proto-Roles theory, a verbal argument receives by virtue of its role in the event described by the verb. This hypothesis were put to test by learning a linear mapping from the BERT’s verb embeddings to an interpretable space of semantic properties built from the linguistic dataset by White et al. (2016). In a first experiment we tested whether the semantic properties inferred from a typed version of the BERT embeddings would be more linguistically plausible than those produced by relying on static embeddings. We then move to evaluate the semantic properties inferred from the contextual embeddings both against those available in the original dataset, as well as by assessing their ability to model the semantic properties possessed by the agent of the verbs participating in the so-called causative alternation.
2022
Proceedings of the 29th International Conference on Computational Linguistics
File in questo prodotto:
File Dimensione Formato  
2022.coling-1.360.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 460.24 kB
Formato Adobe PDF
460.24 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5005802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact