Highway stormwater (HSW) runoff is a significant pathway for transferring microplastics from land-based sources to the other surrounding environmental compartments. Small microplastics (SMPs, 5-100 μm), additives, plasticizers, natural, and nonplastic synthetic fibers, together with other components of micro-litter (APFs), were assessed in HSW samples via Micro-FTIR; oleo-extraction and purification procedures previously developed were optimized to accomplish this goal. The distribution of SMPs and APFs observed in distinct HSW runoff varied significantly since rainfall events may play a crucial role in the concentration and distribution of these pollutants. The SMPs' abundance varied from 11932 ± 151 to 18966 ± 191 SMPs/L. The dominating polymers were vinyl ester (VE), polyamide 6 (PA6), fluorocarbon, and polyester (PES). The APFs' concentrations ranged from 12825 ± 157 to 96425 ± 430 APFs/L. Most APFs originated from vehicle and tire wear (e.g., Dioctyl adipate or 5-Methyl-1H-benzotriazole). Other sources of these pollutants might be pipes, highway signs, packaging from garbage debris, road marking paints, atmospheric deposition, and other inputs. Assessing SMPs in HSW runoff can help evaluating the potential threat they may represent to receiving water bodies and air compartments. Besides, APFs in HSW runoff may be efficient proxies of macro- and microplastic pollution.

Quantification and characterization of additives, plasticizers, and small microplastics (5-100 μm) in highway stormwater runoff

Rosso, Beatrice;Corami, Fabiana
;
Barbante, Carlo;Gambaro, Andrea
2022-01-01

Abstract

Highway stormwater (HSW) runoff is a significant pathway for transferring microplastics from land-based sources to the other surrounding environmental compartments. Small microplastics (SMPs, 5-100 μm), additives, plasticizers, natural, and nonplastic synthetic fibers, together with other components of micro-litter (APFs), were assessed in HSW samples via Micro-FTIR; oleo-extraction and purification procedures previously developed were optimized to accomplish this goal. The distribution of SMPs and APFs observed in distinct HSW runoff varied significantly since rainfall events may play a crucial role in the concentration and distribution of these pollutants. The SMPs' abundance varied from 11932 ± 151 to 18966 ± 191 SMPs/L. The dominating polymers were vinyl ester (VE), polyamide 6 (PA6), fluorocarbon, and polyester (PES). The APFs' concentrations ranged from 12825 ± 157 to 96425 ± 430 APFs/L. Most APFs originated from vehicle and tire wear (e.g., Dioctyl adipate or 5-Methyl-1H-benzotriazole). Other sources of these pollutants might be pipes, highway signs, packaging from garbage debris, road marking paints, atmospheric deposition, and other inputs. Assessing SMPs in HSW runoff can help evaluating the potential threat they may represent to receiving water bodies and air compartments. Besides, APFs in HSW runoff may be efficient proxies of macro- and microplastic pollution.
File in questo prodotto:
File Dimensione Formato  
Microplastics in highway stormwater runoff.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso libero (no vincoli)
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5005180
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact