We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image (Ω) of a reference set Ω and we present some real analyticity results for the dependence upon the map. Then we introduce a perforated domain Ω(ϵ) with a small hole of size ϵ and we compute power series expansions that describe the layer potentials on Ω(ϵ) when the parameter ϵ approximates the degenerate value ϵ = 0.

Shape analyticity and singular perturbations for layer potential operators

Musolino P.
2022

Abstract

We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image (Ω) of a reference set Ω and we present some real analyticity results for the dependence upon the map. Then we introduce a perforated domain Ω(ϵ) with a small hole of size ϵ and we compute power series expansions that describe the layer potentials on Ω(ϵ) when the parameter ϵ approximates the degenerate value ϵ = 0.
File in questo prodotto:
File Dimensione Formato  
20220627m2an_shapeint-Revision.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso gratuito (solo visione)
Dimensione 533.29 kB
Formato Adobe PDF
533.29 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5005163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact