We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image (Ω) of a reference set Ω and we present some real analyticity results for the dependence upon the map. Then we introduce a perforated domain Ω(ϵ) with a small hole of size ϵ and we compute power series expansions that describe the layer potentials on Ω(ϵ) when the parameter ϵ approximates the degenerate value ϵ = 0.

Shape analyticity and singular perturbations for layer potential operators

Musolino P.
2022-01-01

Abstract

We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image (Ω) of a reference set Ω and we present some real analyticity results for the dependence upon the map. Then we introduce a perforated domain Ω(ϵ) with a small hole of size ϵ and we compute power series expansions that describe the layer potentials on Ω(ϵ) when the parameter ϵ approximates the degenerate value ϵ = 0.
File in questo prodotto:
File Dimensione Formato  
20220627m2an_shapeint-Revision.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso gratuito (solo visione)
Dimensione 533.29 kB
Formato Adobe PDF
533.29 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5005163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact