Graph matching is an important and persistent problem in computer vision and pattern recognition for finding node-to-node correspondence between graphs. However, graph matching that incorporates pairwise constraints can be formulated as a quadratic assignment problem (QAP), which is NP-complete and results in intrinsic computational difficulties. This paper presents a functional representation for graph matching (FRGM) that aims to provide more geometric insights on the problem and reduce the space and time complexities. To achieve these goals, we represent each graph by a linear function space equipped with a functional such as inner product or metric, that has an explicit geometric meaning. Consequently, the correspondence matrix between graphs can be represented as a linear representation map. Furthermore, this map can be reformulated as a new parameterization for matching graphs in Euclidean space such that it is consistent with graphs under rigid or nonrigid deformations. This allows us to estimate the correspondence matrix and geometric deformations simultaneously. We use the representation of edge-attributes rather than the affinity matrix to reduce the space complexity and propose an efficient optimization strategy to reduce the time complexity. The experimental results on both synthetic and real-world datasets show that the FRGM can achieve state-of-the-art performance.
A Functional Representation for Graph Matching
Pelillo, Marcello
2020-01-01
Abstract
Graph matching is an important and persistent problem in computer vision and pattern recognition for finding node-to-node correspondence between graphs. However, graph matching that incorporates pairwise constraints can be formulated as a quadratic assignment problem (QAP), which is NP-complete and results in intrinsic computational difficulties. This paper presents a functional representation for graph matching (FRGM) that aims to provide more geometric insights on the problem and reduce the space and time complexities. To achieve these goals, we represent each graph by a linear function space equipped with a functional such as inner product or metric, that has an explicit geometric meaning. Consequently, the correspondence matrix between graphs can be represented as a linear representation map. Furthermore, this map can be reformulated as a new parameterization for matching graphs in Euclidean space such that it is consistent with graphs under rigid or nonrigid deformations. This allows us to estimate the correspondence matrix and geometric deformations simultaneously. We use the representation of edge-attributes rather than the affinity matrix to reduce the space complexity and propose an efficient optimization strategy to reduce the time complexity. The experimental results on both synthetic and real-world datasets show that the FRGM can achieve state-of-the-art performance.File | Dimensione | Formato | |
---|---|---|---|
PAMI 2020.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.