Soil contamination may influence negatively soil health, which often limits and sometimes disqualifies soil biodiversity and decreases plant growth. Soil health is the continued capacity of the soil to function as a vital living system, providing essential ecosystem services. Within soils, all bio-geo-chemical processes of the different ecosystem components are combined. These processes are able to sustain biological productivity of soil, to maintain the quality of surrounding air and water environments, as well as to promote plant, animal, and human health. A common criterion to evaluate long term sustainability of ecosystems is to assess the quality of soil. However, the increased concentration and distribution of toxic substances in soils by mismanagement of industrial activities, overuse of agrochemicals and waste disposal are causing worldwide concern. A major environmental concern in the Mediterranean countries is the production of the large quantities of olive oil mill wastewater (OMW) produced during olive oil extraction process. OMW inhibits several groups of bacteria and fungal species, thus affecting soil stability. In the present study, we investigated the effect of OMW on the soil physical, chemical characteristics and the microarthropods structure. All soil samples were collected from an olive mill garden in Northwest Jordan. Biological soil quality index (QBS-ar) values appeared to decrease with respect to soil pollution by OMW. All investigated parameters were significantly different depending on the levels of OMW contamination in soil. Anthropogenic activities influenced the microarthropod community, altering both quantity and quality of soil chemical and physical structure of the microhabitats. Preliminary data obtained in this study suggest that the application of QBS-ar index could be a useful tool for evaluating surface soils health status.

THE IMPACT OF OLIVE MILL WASTEWATER ON THE PHYSICOCHEMICAL AND BIOLOGICAL PROPERTIES OF SOILS IN NORTHWEST JORDAN.

BINI, Claudio;
2014-01-01

Abstract

Soil contamination may influence negatively soil health, which often limits and sometimes disqualifies soil biodiversity and decreases plant growth. Soil health is the continued capacity of the soil to function as a vital living system, providing essential ecosystem services. Within soils, all bio-geo-chemical processes of the different ecosystem components are combined. These processes are able to sustain biological productivity of soil, to maintain the quality of surrounding air and water environments, as well as to promote plant, animal, and human health. A common criterion to evaluate long term sustainability of ecosystems is to assess the quality of soil. However, the increased concentration and distribution of toxic substances in soils by mismanagement of industrial activities, overuse of agrochemicals and waste disposal are causing worldwide concern. A major environmental concern in the Mediterranean countries is the production of the large quantities of olive oil mill wastewater (OMW) produced during olive oil extraction process. OMW inhibits several groups of bacteria and fungal species, thus affecting soil stability. In the present study, we investigated the effect of OMW on the soil physical, chemical characteristics and the microarthropods structure. All soil samples were collected from an olive mill garden in Northwest Jordan. Biological soil quality index (QBS-ar) values appeared to decrease with respect to soil pollution by OMW. All investigated parameters were significantly different depending on the levels of OMW contamination in soil. Anthropogenic activities influenced the microarthropod community, altering both quantity and quality of soil chemical and physical structure of the microhabitats. Preliminary data obtained in this study suggest that the application of QBS-ar index could be a useful tool for evaluating surface soils health status.
2014
EQA
15
File in questo prodotto:
File Dimensione Formato  
Wahsha et al._ EQA Vol15_2014 (25-31).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Licenza non definita
Dimensione 396.55 kB
Formato Adobe PDF
396.55 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/43853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact