The aim of this paper is to compare three regularized particle filters in an online data processing context. We carry out the comparison in terms of hidden states filtering and parameter estimation, considering a Bayesian paradigm and a univariate Stochastic Volatility (SV) model. We discuss the use of an improper prior distribution in the initialization of the filtering procedure and show that the regularized Auxiliary Particle Filter (APF) outperforms the regularized Sequential Importance Sampling (SIS) and the regularized Sampling Importance Resampling (SIR).

Online data processing: Comparison of Bayesian regularized particle filters

CASARIN, Roberto;
2009-01-01

Abstract

The aim of this paper is to compare three regularized particle filters in an online data processing context. We carry out the comparison in terms of hidden states filtering and parameter estimation, considering a Bayesian paradigm and a univariate Stochastic Volatility (SV) model. We discuss the use of an improper prior distribution in the initialization of the filtering procedure and show that the regularized Auxiliary Particle Filter (APF) outperforms the regularized Sequential Importance Sampling (SIS) and the regularized Sampling Importance Resampling (SIR).
File in questo prodotto:
File Dimensione Formato  
EJS-2008-256.pdf

non disponibili

Tipologia: Abstract
Licenza: Accesso chiuso-personale
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/4319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact