In this paper, we propose new linesearch-based methods for nonsmooth constrained optimization problems when first-order information on the problem functions is not available. In the first part, we describe a general framework for bound-constrained problems and analyze its convergence toward stationary points, using the Clarke-Jahn directional derivative. In the second part, we consider inequality constrained optimization problems where both objective function and constraints can possibly be nonsmooth. In this case, we first split the constraints into two subsets: difficult general nonlinear constraints and simple bound constraints on the variables. Then, we use an exact penalty function to tackle the difficult constraints and we prove that the original problem can be reformulated as the bound-constrained minimization of the proposed exact penalty function. Finally, we use the framework developed for the bound-constrained case to solve the penalized problem. Moreover, we prove that every accumulation point, under standard assumptions on the search directions, of the generated sequence of iterates is a stationary point of the original constrained problem. In the last part of the paper, we report extended numerical results on both bound-constrained and nonlinearly constrained problems, showing that our approach is promising when compared to some state-of-the-art codes from the literature.

A Linesearch-based Derivative-free Approach for Nonsmooth Constrained Optimization

FASANO, Giovanni;
2014-01-01

Abstract

In this paper, we propose new linesearch-based methods for nonsmooth constrained optimization problems when first-order information on the problem functions is not available. In the first part, we describe a general framework for bound-constrained problems and analyze its convergence toward stationary points, using the Clarke-Jahn directional derivative. In the second part, we consider inequality constrained optimization problems where both objective function and constraints can possibly be nonsmooth. In this case, we first split the constraints into two subsets: difficult general nonlinear constraints and simple bound constraints on the variables. Then, we use an exact penalty function to tackle the difficult constraints and we prove that the original problem can be reformulated as the bound-constrained minimization of the proposed exact penalty function. Finally, we use the framework developed for the bound-constrained case to solve the penalized problem. Moreover, we prove that every accumulation point, under standard assumptions on the search directions, of the generated sequence of iterates is a stationary point of the original constrained problem. In the last part of the paper, we report extended numerical results on both bound-constrained and nonlinearly constrained problems, showing that our approach is promising when compared to some state-of-the-art codes from the literature.
2014
24
File in questo prodotto:
File Dimensione Formato  
94003-gg.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso libero (no vincoli)
Dimensione 425.31 kB
Formato Adobe PDF
425.31 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/42404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
social impact