Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag(0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface.
Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag (0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface. (C) 2014 Elsevier B.V. All rights reserved.
Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry
BATTISTEL, DARIO;BALDI, Franco;GALLO, Michele;DANIELE, Salvatore
2015-01-01
Abstract
Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag (0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface. (C) 2014 Elsevier B.V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0039914014007899-main.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Licenza non definita
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
Manuscript.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
107.75 kB
Formato
Adobe PDF
|
107.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.