A general numerical methodology for parametric sensitivity analysis is proposed, which allows to determine the parameters exerting the greatest influence on the output of a stochastic computational model, especially when the knowledge about the actual value of a parameter is insufficient. An application of the procedure is performed on a model of protocell, in order to detect the kinetic rates mainly affecting the capability of a catalytic reaction network enclosed in a semi-permeable membrane to retain material from its environment and to generate a variety of molecular species within its boundaries. It is shown that the former capability is scarcely sensitive to variations in the model parameters, whereas a kinetic rate responsible for profound modifications of the latter can be identified and it depends on the specific reaction network. A faster uptaking of limited resources from the environment may have represented a significant advantage from an evolutionary point of view and this result is a first indication in order to decipher which kind of structures are more suitable to achieve a viable evolution.

Parameter sensitivity analysis of stochastic models: Application to catalytic reaction networks

DAMIANI, CHIARA;FILISETTI, ALESSANDRO;GRAUDENZI, ALEX;
2013-01-01

Abstract

A general numerical methodology for parametric sensitivity analysis is proposed, which allows to determine the parameters exerting the greatest influence on the output of a stochastic computational model, especially when the knowledge about the actual value of a parameter is insufficient. An application of the procedure is performed on a model of protocell, in order to detect the kinetic rates mainly affecting the capability of a catalytic reaction network enclosed in a semi-permeable membrane to retain material from its environment and to generate a variety of molecular species within its boundaries. It is shown that the former capability is scarcely sensitive to variations in the model parameters, whereas a kinetic rate responsible for profound modifications of the latter can be identified and it depends on the specific reaction network. A faster uptaking of limited resources from the environment may have represented a significant advantage from an evolutionary point of view and this result is a first indication in order to decipher which kind of structures are more suitable to achieve a viable evolution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/40024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact