We prove that a group with spectrum {1, 2, 3,4, 5, 8} is locally finite and is isomorphic to M10, where M10= A6 ·2 is the 3-transitive Mathieu group of degree 10, i.e. the corresponding maximal subgroup of the sporadic simple group M11.
Recognizing M10 by spectrum in the class of all groups.
JABARA, Enrico;
2014-01-01
Abstract
We prove that a group with spectrum {1, 2, 3,4, 5, 8} is locally finite and is isomorphic to M10, where M10= A6 ·2 is the 3-transitive Mathieu group of degree 10, i.e. the corresponding maximal subgroup of the sporadic simple group M11.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
M10.PDF
embargo fino al 01/04/2030
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
150.79 kB
Formato
Adobe PDF
|
150.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.