Background: Human colon adenocarcinoma cells are resistant to chemotherapeutic agents, such as anthracyclines, that induce death by increasing the reactive oxygen species. A number of studies have been focused on chemo-preventive use of resveratrol as antioxidant against cardiovascular diseases, aging and cancer. While resveratrol cytotoxic action was due to its pro-oxidant properties. In this study, we investigate whether the Resveratrol (trans-3,5,49-trihydroxystilbene) and its natural precursor Polydatin (resveratrol-3-O-b-mono- D-glucoside, the glycoside form of resveratrol) combination, might have a cooperative antitumor effect on either growing or differentiated human adenocarcinoma colon cancer cells. Methods: The polydatin and resveratrol pharmacological interaction was evaluated in vitro on growing and differentiated Caco-2 cell lines by median drug effect analysis calculating a combination index with CalcuSyn software. We have selected a synergistic combination and we have evaluated its effect on the biological and molecular mechanisms of cell death. Results: Simultaneous exposure to polydatin and resveratrol produced synergistic antiproliferative effects compared with single compound treatment. We demonstrated that polydatin alone or in combination with resveratrol at 3:1 molar ratio synergistically modulated oxidative stress, cell cycle, differentiation and apoptosis. Worthy of note treatment with polydatin induced a nuclear localization and decreased expression of heat shock protein 27, and vimentin redistributed within the cell. Conclusions: From morphological, and biochemical outcome we obtained evidences that polydatin induced a transition from a proliferative morphology to cell-specific differentiated structures and caused human CaCo-2 cell death by induction of apoptosis. Our data suggest the potential use of polydatin in combination chemotherapy for human colon cancer.

Polydatin, a natural precursor of resveratrol, induces cell cycle arrest and differentiation of human colorectal Caco-2 cell.

RAVAGNAN, Giampietro;
2013-01-01

Abstract

Background: Human colon adenocarcinoma cells are resistant to chemotherapeutic agents, such as anthracyclines, that induce death by increasing the reactive oxygen species. A number of studies have been focused on chemo-preventive use of resveratrol as antioxidant against cardiovascular diseases, aging and cancer. While resveratrol cytotoxic action was due to its pro-oxidant properties. In this study, we investigate whether the Resveratrol (trans-3,5,49-trihydroxystilbene) and its natural precursor Polydatin (resveratrol-3-O-b-mono- D-glucoside, the glycoside form of resveratrol) combination, might have a cooperative antitumor effect on either growing or differentiated human adenocarcinoma colon cancer cells. Methods: The polydatin and resveratrol pharmacological interaction was evaluated in vitro on growing and differentiated Caco-2 cell lines by median drug effect analysis calculating a combination index with CalcuSyn software. We have selected a synergistic combination and we have evaluated its effect on the biological and molecular mechanisms of cell death. Results: Simultaneous exposure to polydatin and resveratrol produced synergistic antiproliferative effects compared with single compound treatment. We demonstrated that polydatin alone or in combination with resveratrol at 3:1 molar ratio synergistically modulated oxidative stress, cell cycle, differentiation and apoptosis. Worthy of note treatment with polydatin induced a nuclear localization and decreased expression of heat shock protein 27, and vimentin redistributed within the cell. Conclusions: From morphological, and biochemical outcome we obtained evidences that polydatin induced a transition from a proliferative morphology to cell-specific differentiated structures and caused human CaCo-2 cell death by induction of apoptosis. Our data suggest the potential use of polydatin in combination chemotherapy for human colon cancer.
File in questo prodotto:
File Dimensione Formato  
J Translat Med_De Maria 2013.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso libero (no vincoli)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/39833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 74
social impact