Traditional camera models are often the result of a compromise between the ability to account for non-linearities in the image formation model and the need for a feasible number of degrees of freedom in the estimation process. These considerations led to the definition of several ad hoc models that best adapt to different imaging devices, ranging from pinhole cameras with no radial distortion to the more complex catadioptric or polydioptric optics. In this paper we propose the use of an unconstrained model even in standard central camera settings dominated by the pinhole model, and introduce a novel calibration approach that can deal effectively with the huge number of free parameters associated with it, resulting in a higher precision calibration than what is possible with the standard pinhole model with correction for radial distortion. This effectively extends the use of general models to settings that traditionally have been ruled by parametric approaches out of practical considerations. The benefit of such an unconstrained model to quasi-pinhole central cameras is supported by an extensive experimental validation. © 2013 IEEE.

Can a Fully Unconstrained Imaging Model Be Applied Effectively to Central Cameras?

BERGAMASCO, FILIPPO;ALBARELLI, Andrea;RODOLA', Emanuele;TORSELLO, Andrea
2013

Abstract

Traditional camera models are often the result of a compromise between the ability to account for non-linearities in the image formation model and the need for a feasible number of degrees of freedom in the estimation process. These considerations led to the definition of several ad hoc models that best adapt to different imaging devices, ranging from pinhole cameras with no radial distortion to the more complex catadioptric or polydioptric optics. In this paper we propose the use of an unconstrained model even in standard central camera settings dominated by the pinhole model, and introduce a novel calibration approach that can deal effectively with the huge number of free parameters associated with it, resulting in a higher precision calibration than what is possible with the standard pinhole model with correction for radial distortion. This effectively extends the use of general models to settings that traditionally have been ruled by parametric approaches out of practical considerations. The benefit of such an unconstrained model to quasi-pinhole central cameras is supported by an extensive experimental validation. © 2013 IEEE.
2013 IEEE Conference on Computer Vision and Pattern Recognition
File in questo prodotto:
File Dimensione Formato  
published.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 693.84 kB
Formato Adobe PDF
693.84 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/39027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact