The exposure of the Venice lagoon (Italy) to endocrine-disrupting compounds (EDCs) from different sources was investigated. Spatial and time distribution of EDC concentrations were determined in four sampling sessions (December 200 I-May 2002) by solid phase extraction followed by high-performance liquid chromatography separation coupled with mass spectrometry detection via electrospray interface (SPE-HPLC-ESI-MS), which allowed identification of natural (estradiol, estrone) and synthetic estrogenic compounds, both steroidal (ethinylestradiol, mestranol) and nonsteroidal (benzophenone, bisphenol-A, nonylphenol, nonylphenol monoethoxylate carboxylate). No significant differences in the EDC distribution were observed between stations located near selected sources (raw sewage from the historical center of Venice, treated municipal and industrial effluents from sewage treatment plants, and areas undergoing the inflow of rivers). While synthetic nonsteroidal analytes were recorded in the I to 1,040 ng/L range (average concentration: 34 ng/L), steroidal EDC (estradiol, ethinylestradiol) concentrations were lower (1-125 ng/L; average concentration: 8 ng/L). The estrogenic activity of lagoon waters was estimated in terms of estradiol equivalent concentration (EEQ) by applying the estradiol equivalency factors (EEFs). Steroidal EDCs (estradiol, ethinylestradiol) contributed >97% to the total potential estrogenicity of the waters, which accounted for 4 to 172 ng/L (average: 25 ng/L), as total EEQs. These levels are likely to pose adverse effects on the Venice lagoon aquatic organisms.
Estrogenic potential of the Venice, Italy, lagoon waters
POJANA, Giulio;MARCOMINI, Antonio
2004-01-01
Abstract
The exposure of the Venice lagoon (Italy) to endocrine-disrupting compounds (EDCs) from different sources was investigated. Spatial and time distribution of EDC concentrations were determined in four sampling sessions (December 200 I-May 2002) by solid phase extraction followed by high-performance liquid chromatography separation coupled with mass spectrometry detection via electrospray interface (SPE-HPLC-ESI-MS), which allowed identification of natural (estradiol, estrone) and synthetic estrogenic compounds, both steroidal (ethinylestradiol, mestranol) and nonsteroidal (benzophenone, bisphenol-A, nonylphenol, nonylphenol monoethoxylate carboxylate). No significant differences in the EDC distribution were observed between stations located near selected sources (raw sewage from the historical center of Venice, treated municipal and industrial effluents from sewage treatment plants, and areas undergoing the inflow of rivers). While synthetic nonsteroidal analytes were recorded in the I to 1,040 ng/L range (average concentration: 34 ng/L), steroidal EDC (estradiol, ethinylestradiol) concentrations were lower (1-125 ng/L; average concentration: 8 ng/L). The estrogenic activity of lagoon waters was estimated in terms of estradiol equivalent concentration (EEQ) by applying the estradiol equivalency factors (EEFs). Steroidal EDCs (estradiol, ethinylestradiol) contributed >97% to the total potential estrogenicity of the waters, which accounted for 4 to 172 ng/L (average: 25 ng/L), as total EEQs. These levels are likely to pose adverse effects on the Venice lagoon aquatic organisms.File | Dimensione | Formato | |
---|---|---|---|
2004_Pojana et al. EnvTox&Chem - estrogenic potential.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
255.6 kB
Formato
Adobe PDF
|
255.6 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.