We propose a discrete-time stochastic dynamics for a system of many interacting agents. At each time step agents aim at maximizing their individual payoff, depending on their action, on the global trend of the system and on a random noise; frictions are also taken into account. The equilibrium of the resulting sequence of games gives rise to a stochastic evolution. In the limit of infinitely many agents, a law of large numbers is obtained; the limit dynamics consist in an implicit dynamical system, possibly multiple valued. For a special model, we determine the phase diagram for the long time behavior of these limit dynamics and we show the existence of a phase, where a locally stable fixed point coexists with a locally stable periodic orbit.

We propose a discrete-time stochastic dynamics for a system of many interacting agents. At each time step agents aim at maximizing their individual payoff, depending on their action, on the global trend of the system and on a random noise; frictions are also taken into account. The equilibrium of the resulting sequence of games gives rise to a stochastic evolution. In the limit of infinitely many agents, a law of large numbers is obtained; the limit dynamics consist in an implicit dynamical system, possibly multiple valued. For a special model, we determine the phase diagram for the long time behavior of these limit dynamics and we show the existence of a phase, where a locally stable fixed point coexists with a locally stable periodic orbit.

Strategic interaction in trend-driven dynamics

SARTORI, ELENA;TOLOTTI, Marco
2013-01-01

Abstract

We propose a discrete-time stochastic dynamics for a system of many interacting agents. At each time step agents aim at maximizing their individual payoff, depending on their action, on the global trend of the system and on a random noise; frictions are also taken into account. The equilibrium of the resulting sequence of games gives rise to a stochastic evolution. In the limit of infinitely many agents, a law of large numbers is obtained; the limit dynamics consist in an implicit dynamical system, possibly multiple valued. For a special model, we determine the phase diagram for the long time behavior of these limit dynamics and we show the existence of a phase, where a locally stable fixed point coexists with a locally stable periodic orbit.
File in questo prodotto:
File Dimensione Formato  
[18]JSP_July2013.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 657.73 kB
Formato Adobe PDF
657.73 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/38004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact