Let p be a fixed odd prime number. In this note we study the class of finite p-groups G admitting an automorphism ϕ of order 2 such that G=< g^-1g^ϕ |g∈G〉 and (g^-1 g^ϕ )^p =1 for all g∈G. In this paper we prove that if the derived length of G is d and C G (ϕ) is nilpotent of class c, then the nilpotency class of G is bounded by a function depending only on d,c and p. We prove also that if p=3 and C G (ϕ) is nilpotent of class c, then G is nilpotent of class at most 2c+1.
Automorfismi involutori di p-gruppi finiti.
BUSETTO, Giorgio;JABARA, Enrico
2013-01-01
Abstract
Let p be a fixed odd prime number. In this note we study the class of finite p-groups G admitting an automorphism ϕ of order 2 such that G=< g^-1g^ϕ |g∈G〉 and (g^-1 g^ϕ )^p =1 for all g∈G. In this paper we prove that if the derived length of G is d and C G (ϕ) is nilpotent of class c, then the nilpotency class of G is bounded by a function depending only on d,c and p. We prove also that if p=3 and C G (ϕ) is nilpotent of class c, then G is nilpotent of class at most 2c+1.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JABeBu.pdf
embargo fino al 30/12/2029
Tipologia:
Documento in Post-print
Licenza:
Licenza non definita
Dimensione
131.91 kB
Formato
Adobe PDF
|
131.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.