Abstract Hydroxyapatite (Ca10(PO4)6(OH)2 - HAp) is a common material for bone replacement in artificial implants and prostheses, due to its high biocompatibility. In this work we report about the preparation of HAp-based materials of marine origin with antibacterial properties. Bones from cod fish (Gadhus morua) were treated with a dilute AgNO3 solution, to obtain HAp-containing samples with silver as a minor component. The samples were characterised by XRD, FT-IR spectroscopy and SEM, indicating the presence of HAp, β-TCP and some metallic silver. The determination of unit cell parameters, however, indicated that the majority of silver is substituted in the β-TCP lattice in ionic form. The antibacterial activity of these materials was tested towards both Gram-positive and Gram-negative bacterias; results showed that the material is very effective with Gram-negative strains such as Escherichia coli (inactivation rates of 99.82% and 99.999% after 2 and 5 h, respectively) and had a smaller but still significant effect on Gram-positive MRSA (91% inactivation rate). These results show the potentials of these samples as infection-resistant bone replacement materials.
Silver-containing calcium phosphate materials of marine origin with antibacterial activity
Pullar R. C.;
2015-01-01
Abstract
Abstract Hydroxyapatite (Ca10(PO4)6(OH)2 - HAp) is a common material for bone replacement in artificial implants and prostheses, due to its high biocompatibility. In this work we report about the preparation of HAp-based materials of marine origin with antibacterial properties. Bones from cod fish (Gadhus morua) were treated with a dilute AgNO3 solution, to obtain HAp-containing samples with silver as a minor component. The samples were characterised by XRD, FT-IR spectroscopy and SEM, indicating the presence of HAp, β-TCP and some metallic silver. The determination of unit cell parameters, however, indicated that the majority of silver is substituted in the β-TCP lattice in ionic form. The antibacterial activity of these materials was tested towards both Gram-positive and Gram-negative bacterias; results showed that the material is very effective with Gram-negative strains such as Escherichia coli (inactivation rates of 99.82% and 99.999% after 2 and 5 h, respectively) and had a smaller but still significant effect on Gram-positive MRSA (91% inactivation rate). These results show the potentials of these samples as infection-resistant bone replacement materials.File | Dimensione | Formato | |
---|---|---|---|
41CeramInt10152.pdf
non disponibili
Descrizione: Articolo finale
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
627.46 kB
Formato
Adobe PDF
|
627.46 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.