Coastal dune vegetation has been proved to contribute to several crucial ecosystem services, as coastal protection, water purification, recreation; conversely, its capacity to regulate the concentration of greenhouse gases received less attention. To fill this gap, the present work focalized on the assessment of the contribution of coastal dune herbaceous vegetation to carbon storage and carbon sequestration rate, also in relation to possible effects of disturbance. To this aim, we measured the dry biomass and carbon sequestration rate in three different vegetation types (foredune, dry grasslands, humid grasslands), and habitat patch attributes as proxies of the disturbance regime. Relationships between disturbance, and carbon storage and sequestration rate have been analysed by GLMMs. The target vegetation types did not equally contribute to the medium-long term sequestration of carbon with a gradient that increased from the seashore inlands and related to both the growth form and the strategy of resource acquisition of dominant species, and plant community attributes. Disturbance in the form of trampling negatively affected carbon sequestration rate. Results suggest that, when different plant communities are spatially interconnected, the landscape scale results in a better understanding of ecosystem dynamics, functioning and resistance to perturbations and allows to plan coherent management strategies.

Disturbance affects the contribution of coastal dune vegetation to carbon storage and carbon sequestration rate

Del Vecchio, Silvia;Rova, Silvia;Fantinato, Edy;Pranovi, Fabio;Buffa, Gabriella
2022-01-01

Abstract

Coastal dune vegetation has been proved to contribute to several crucial ecosystem services, as coastal protection, water purification, recreation; conversely, its capacity to regulate the concentration of greenhouse gases received less attention. To fill this gap, the present work focalized on the assessment of the contribution of coastal dune herbaceous vegetation to carbon storage and carbon sequestration rate, also in relation to possible effects of disturbance. To this aim, we measured the dry biomass and carbon sequestration rate in three different vegetation types (foredune, dry grasslands, humid grasslands), and habitat patch attributes as proxies of the disturbance regime. Relationships between disturbance, and carbon storage and sequestration rate have been analysed by GLMMs. The target vegetation types did not equally contribute to the medium-long term sequestration of carbon with a gradient that increased from the seashore inlands and related to both the growth form and the strategy of resource acquisition of dominant species, and plant community attributes. Disturbance in the form of trampling negatively affected carbon sequestration rate. Results suggest that, when different plant communities are spatially interconnected, the landscape scale results in a better understanding of ecosystem dynamics, functioning and resistance to perturbations and allows to plan coherent management strategies.
2022
59
File in questo prodotto:
File Dimensione Formato  
2022_DelVecchio_etal_Disturbance affects the contribution of coastal dune vegetation.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso gratuito (solo visione)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3762328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact