In this contribution we consider a genetic programming approach to price rainfall derivatives and we test it on a case study based on data collected from a meteorological station in a city in the northeast region of Friuli Venezia Giulia (Italy), characterized by a fairly abundant rainfall.

Pricing Rainfall Derivatives by Genetic Programming: A Case Study

Barro, Diana;Parpinel, Francesca;Pizzi, Claudio
2022-01-01

Abstract

In this contribution we consider a genetic programming approach to price rainfall derivatives and we test it on a case study based on data collected from a meteorological station in a city in the northeast region of Friuli Venezia Giulia (Italy), characterized by a fairly abundant rainfall.
2022
Mathematical and Statistical Methods for Actuarial Sciences and Finance. MAF 2022
File in questo prodotto:
File Dimensione Formato  
Pizzi_Barro_Parpinel_MAF2022.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 187.81 kB
Formato Adobe PDF
187.81 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3761388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact