Hypergraph clustering refers to the process of extracting maximally coherent groups from a set of objects using high-order (rather than pairwise) similarities. Traditional approaches to this problem are based on the idea of partitioning the input data into a predetermined number of classes, thereby obtaining the clusters as a by-product of the partitioning process. In this paper, we offer a radically different view of the problem. In contrast to the classical approach, we attempt to provide a meaningful formalization of the very notion of a cluster and we show that game theory offers an attractive and unexplored perspective that serves our purpose well. To this end, we formulate the hypergraph clustering problem in terms of a noncooperative multiplayer "clustering game," and show that a natural notion of a cluster turns out to be equivalent to a classical (evolutionary) game-theoretic equilibrium concept. We prove that the problem of finding the equilibria of our clustering game is equivalent to locally optimizing a polynomial function over the standard simplex, and we provide a discrete-time high-order replicator dynamics to perform this optimization, based on the Baum-Eagon inequality. Experiments over synthetic as well as real-world data are presented which show the superiority of our approach over the state of the art. © 2013 IEEE.

A game-theoretic approach to hypergraph clustering

ROTA BULO', Samuel;PELILLO, Marcello
2013-01-01

Abstract

Hypergraph clustering refers to the process of extracting maximally coherent groups from a set of objects using high-order (rather than pairwise) similarities. Traditional approaches to this problem are based on the idea of partitioning the input data into a predetermined number of classes, thereby obtaining the clusters as a by-product of the partitioning process. In this paper, we offer a radically different view of the problem. In contrast to the classical approach, we attempt to provide a meaningful formalization of the very notion of a cluster and we show that game theory offers an attractive and unexplored perspective that serves our purpose well. To this end, we formulate the hypergraph clustering problem in terms of a noncooperative multiplayer "clustering game," and show that a natural notion of a cluster turns out to be equivalent to a classical (evolutionary) game-theoretic equilibrium concept. We prove that the problem of finding the equilibria of our clustering game is equivalent to locally optimizing a polynomial function over the standard simplex, and we provide a discrete-time high-order replicator dynamics to perform this optimization, based on the Baum-Eagon inequality. Experiments over synthetic as well as real-world data are presented which show the superiority of our approach over the state of the art. © 2013 IEEE.
File in questo prodotto:
File Dimensione Formato  
PAMI 2013.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/37603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 86
social impact