In this work, we present a front-end stage with signal compression capability to be used in detectors for the new European XFEL in Hamburg. This front-end is an alternative solution under study for the DEPFET Sensor with Signal Compression (DSSC) detection system for the European XFEL. The DEPFET sensor of the DSSC project has a high dynamic range and very good noise performance. The high gain for small collected charge and the compression for large signals will provide both desired features of single photon detection capability and wide dynamic range. However, manufacturing of the DEPFET sensor requires a sophisticated processing technology with a relatively long time fabrication process. Accordingly, an alternative solution, namely Day-0 solution, was introduced as an approach characterized not by the best performance of the DEPFET, but available in a shorter time to allow first beam tests and experiments. The alternative sensor is made of mini Silicon Drift Detector (mini-SDD) and the compression behavior is obtained from the front-end on the readout ASIC and not by the transistor integrated in the silicon sensor, as in the DEPFET. The first version of corresponding front-end of the Day-0 solution has been realized based on an input PMOSFET transistor placed on the readout chip. This simple front-end proved the working principle of the proposed compression technique and the desired noise performance. In this paper, an improved version of the Day-0 front-end is presented. In the new prototype, the current gain of the front-end stage has been increased by factor of 1.8, the total input capacitance (SDD+PMOSFET) has been reduced by factor of 2 with respect to the previous prototype and consequently the noise performance has been improved. Moreover, by introducing selectable extra branches in parallel with the main one, the compression behavior of the front-end can be tuned based on desired dynamic range.

A front-end stage with signal compression capability for XFEL detectors

Porro M.
2015

Abstract

In this work, we present a front-end stage with signal compression capability to be used in detectors for the new European XFEL in Hamburg. This front-end is an alternative solution under study for the DEPFET Sensor with Signal Compression (DSSC) detection system for the European XFEL. The DEPFET sensor of the DSSC project has a high dynamic range and very good noise performance. The high gain for small collected charge and the compression for large signals will provide both desired features of single photon detection capability and wide dynamic range. However, manufacturing of the DEPFET sensor requires a sophisticated processing technology with a relatively long time fabrication process. Accordingly, an alternative solution, namely Day-0 solution, was introduced as an approach characterized not by the best performance of the DEPFET, but available in a shorter time to allow first beam tests and experiments. The alternative sensor is made of mini Silicon Drift Detector (mini-SDD) and the compression behavior is obtained from the front-end on the readout ASIC and not by the transistor integrated in the silicon sensor, as in the DEPFET. The first version of corresponding front-end of the Day-0 solution has been realized based on an input PMOSFET transistor placed on the readout chip. This simple front-end proved the working principle of the proposed compression technique and the desired noise performance. In this paper, an improved version of the Day-0 front-end is presented. In the new prototype, the current gain of the front-end stage has been increased by factor of 1.8, the total input capacitance (SDD+PMOSFET) has been reduced by factor of 2 with respect to the previous prototype and consequently the noise performance has been improved. Moreover, by introducing selectable extra branches in parallel with the main one, the compression behavior of the front-end can be tuned based on desired dynamic range.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3755554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact