This study proposes a climate service named Smart Climate Hydropower Tool (SCHT) and designed as a hybrid forecast system for supporting decision-making in a context of hydropower production. SCHT is technically designed to make use of information from state-of-art seasonal forecasts provided by the Copernicus Climate Data Store (CDS) combined with a range of different machine learning algorithms to perform the seasonal forecast of the accumulated inflow discharges to the reservoir of hydropower plants. The machine learning algorithms considered include support vector regression, Gaussian processes, long short-term memory, non-linear autoregressive neural networks with exogenous inputs, and a deep-learning neural networks model. Each machine learning model is trained over past decades datasets of recorded data, and forecast performances are validated and evaluated using separate test sets with reference to the historical average of discharge values and simpler multiparametric regressions. Final results are presented to the users through a user-friendly web interface developed from a tied connection with end-users in an effective co-design process. Methods are tested for forecasting the accumulated seasonal river discharges up to six months in advance for two catchments in Colombia, South America. Results indicate that the machine learning algorithms that make use of a complex and/or recurrent architecture can better simulate the temporal dynamic behaviour of the accumulated river discharge inflow to both case study reservoirs, thus rendering SCHT a useful tool in providing information for water resource managers in better planning the allocation of water resources for different users and for hydropower plant managers when negotiating power purchase contracts in competitive energy markets.

Smart climate hydropower tool: A machine-learning seasonal forecasting climate service to support cost–benefit analysis of reservoir management

Hrast Essenfelder A.;Larosa F.;Mysiak J.;
2020-01-01

Abstract

This study proposes a climate service named Smart Climate Hydropower Tool (SCHT) and designed as a hybrid forecast system for supporting decision-making in a context of hydropower production. SCHT is technically designed to make use of information from state-of-art seasonal forecasts provided by the Copernicus Climate Data Store (CDS) combined with a range of different machine learning algorithms to perform the seasonal forecast of the accumulated inflow discharges to the reservoir of hydropower plants. The machine learning algorithms considered include support vector regression, Gaussian processes, long short-term memory, non-linear autoregressive neural networks with exogenous inputs, and a deep-learning neural networks model. Each machine learning model is trained over past decades datasets of recorded data, and forecast performances are validated and evaluated using separate test sets with reference to the historical average of discharge values and simpler multiparametric regressions. Final results are presented to the users through a user-friendly web interface developed from a tied connection with end-users in an effective co-design process. Methods are tested for forecasting the accumulated seasonal river discharges up to six months in advance for two catchments in Colombia, South America. Results indicate that the machine learning algorithms that make use of a complex and/or recurrent architecture can better simulate the temporal dynamic behaviour of the accumulated river discharge inflow to both case study reservoirs, thus rendering SCHT a useful tool in providing information for water resource managers in better planning the allocation of water resources for different users and for hydropower plant managers when negotiating power purchase contracts in competitive energy markets.
2020
11
File in questo prodotto:
File Dimensione Formato  
atmosphere-11-01305.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 8.05 MB
Formato Adobe PDF
8.05 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3754600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact