Nowadays Machine Learning (ML) techniques are extensively adopted in many socially sensitive systems, thus requiring to carefully study the fairness of the decisions taken by such systems. Many approaches have been proposed to address and to make sure there is no bias against individuals or specific groups which might originally come from biased training datasets or algorithm design. In this regard, we propose a fairness enforcing approach called EiFFFeL --Enforcing Fairness in Forests by Flipping Leaves-- which exploits tree-based or leaf-based post-processing strategies to relabel leaves of selected decision trees of a given forest. Experimental results show that our approach achieves a user-defined group fairness degree without losing a significant amount of accuracy.
EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves
Seyum Assefa Abebe
;Claudio Lucchese;Salvatore Orlando
2022-01-01
Abstract
Nowadays Machine Learning (ML) techniques are extensively adopted in many socially sensitive systems, thus requiring to carefully study the fairness of the decisions taken by such systems. Many approaches have been proposed to address and to make sure there is no bias against individuals or specific groups which might originally come from biased training datasets or algorithm design. In this regard, we propose a fairness enforcing approach called EiFFFeL --Enforcing Fairness in Forests by Flipping Leaves-- which exploits tree-based or leaf-based post-processing strategies to relabel leaves of selected decision trees of a given forest. Experimental results show that our approach achieves a user-defined group fairness degree without losing a significant amount of accuracy.File | Dimensione | Formato | |
---|---|---|---|
EiFFFeL.pdf
accesso aperto
Descrizione: EiFFFeL: Enforcing Fairness in Forests by Flipping Leaves
Tipologia:
Documento in Pre-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
654.15 kB
Formato
Adobe PDF
|
654.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.