Experimental game theory studies the behavior of agents who face a stream of one-shot games as a form of learning. Most literature focuses on a single recurring identical game. This paper embeds single-game learning in a broader perspective, where learning can take place across similar games. We posit that agents categorize games into a few classes and tend to play the same action within a class. The agent’s categories are generated by combining game features (payoffs) and individual motives. An individual categorization is experience-based, and may change over time. We demonstrate our approach by testing a robust (parameter-free) model over a large body of independent experimental evidence over 2 × 2 symmetric games. The model provides a very good fit across games, performing remarkably better than standard learning models.

Feature-weighted categorized play across symmetric games

Li Calzi M.;
2022-01-01

Abstract

Experimental game theory studies the behavior of agents who face a stream of one-shot games as a form of learning. Most literature focuses on a single recurring identical game. This paper embeds single-game learning in a broader perspective, where learning can take place across similar games. We posit that agents categorize games into a few classes and tend to play the same action within a class. The agent’s categories are generated by combining game features (payoffs) and individual motives. An individual categorization is experience-based, and may change over time. We demonstrate our approach by testing a robust (parameter-free) model over a large body of independent experimental evidence over 2 × 2 symmetric games. The model provides a very good fit across games, performing remarkably better than standard learning models.
2022
25
File in questo prodotto:
File Dimensione Formato  
LiCalzi-Muhlenbernd2022_Article_Feature-weightedCategorizedPla.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3754286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact