Chirp technology is an acoustic tool for imaging the shallow seabed with a high resolution, used for investigations of modern to Quaternary sedimentary structures and processes and more applied goals, such as hazard surveys for drilling, archeology, geology or engineering fields. In this paper, we present new methods that improve such imaging. During the standard acquisition, the Chirp waveforms are converted into analytic signals and only their envelope is preserved and interpreted, because the highly oscillating signal is otherwise difficult to be identified visually. Doing so, however, the phase information is lost, and the final processing is limited mainly to simple time-varying gain recovery or filtering. We present a work flow including a derivative step to transform the enveloped signal into a seismic-like waveform. In this way, we can apply processing tools as FX deconvolution and migration to improve the signal/noise ratio and reduce diffractions. This method allows reviving standard and legacy Chirp data where the full-waveform information is missing.

Fast method to transform chirp envelope data into pseudo-seismic data

Battaglia F.;
2021-01-01

Abstract

Chirp technology is an acoustic tool for imaging the shallow seabed with a high resolution, used for investigations of modern to Quaternary sedimentary structures and processes and more applied goals, such as hazard surveys for drilling, archeology, geology or engineering fields. In this paper, we present new methods that improve such imaging. During the standard acquisition, the Chirp waveforms are converted into analytic signals and only their envelope is preserved and interpreted, because the highly oscillating signal is otherwise difficult to be identified visually. Doing so, however, the phase information is lost, and the final processing is limited mainly to simple time-varying gain recovery or filtering. We present a work flow including a derivative step to transform the enveloped signal into a seismic-like waveform. In this way, we can apply processing tools as FX deconvolution and migration to improve the signal/noise ratio and reduce diffractions. This method allows reviving standard and legacy Chirp data where the full-waveform information is missing.
File in questo prodotto:
File Dimensione Formato  
Baradello_Battaglia2021.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 6.67 MB
Formato Adobe PDF
6.67 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3753387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact