Industrial manufacturing processes often involve a visual control system to detect possible product defects during production. Such inspection devices usually include one or more cameras and several light sources designed to highlight surface imperfections under different illumination conditions (e.g. bumps, scratches, holes). In such scenarios, a preliminary calibration procedure of each component is a mandatory step to recover the system’s geometrical configuration and thus ensure a good process accuracy. In this paper we propose a procedure to estimate the position of each light source with respect to a camera network using an inexpensive Lambertian spherical target. For each light source, the target is acquired at different positions from different cameras, and an initial guess of the corresponding light vector is recovered from the analysis of the collected intensity isocurves. Then, an energy minimization process based on the Lambertian shading model refines the result for a pr ecise 3D localization. We tested our approach in an industrial setup, performing extensive experiments on synthetic and real-world data to demonstrate the accuracy of the proposed approach.
A Light Source Calibration Technique for Multi-camera Inspection Devices
Pistellato, Mara
;Albarelli, Andrea;Bergamasco, Filippo
2022-01-01
Abstract
Industrial manufacturing processes often involve a visual control system to detect possible product defects during production. Such inspection devices usually include one or more cameras and several light sources designed to highlight surface imperfections under different illumination conditions (e.g. bumps, scratches, holes). In such scenarios, a preliminary calibration procedure of each component is a mandatory step to recover the system’s geometrical configuration and thus ensure a good process accuracy. In this paper we propose a procedure to estimate the position of each light source with respect to a camera network using an inexpensive Lambertian spherical target. For each light source, the target is acquired at different positions from different cameras, and an initial guess of the corresponding light vector is recovered from the analysis of the collected intensity isocurves. Then, an energy minimization process based on the Lambertian shading model refines the result for a pr ecise 3D localization. We tested our approach in an industrial setup, performing extensive experiments on synthetic and real-world data to demonstrate the accuracy of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
ICPRAM___Light_Calibration (2).pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
4.54 MB
Formato
Adobe PDF
|
4.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.