This paper reports on an ultrasensitive and label-free electrochemical immunosensor for monitoring the SARS-CoV-2 spike protein (SARS-CoV-2 SP). A self-supported electrode, which can simultaneously serve as an antibody immobilization matrix and electron transport channel, was initially fabricated by a controlled partial exfoliation of a flexible graphitic carbon foil (GCF). Mild acidic treatment enabled the partial oxidation and exfoliation (down to a few layers) of the flexible GCF; this also provided a high percentage of oxygen functionality and an enhanced surface roughness. The substrate electrode was further functionalized with ethylenediamine (EDA) to provide a suitable platform with even a higher surface roughness, for the covalent immobilization of an anti-SARS-CoV-2 antibody. The change in the current response for the [Fe(CN)6]3−/4− redox couple, induced by the binding of SARS-CoV-2 SP to the antibody immobilized on the electrode surface, was used to determine the SARS-CoV-2 SP concentration. The immunosensor thus prepared could detect SARS-CoV-2 SP within 30 min with high reproducibility and specificity over a wide concentration range (0.2–100 ng/mL). Detection limits of 25 pg/mL and 27 pg/mL were found in a phosphate buffer solution (pH 7.4), and diluted blood plasma, respectively. The immunosensor was also employed to detect SARS-CoV-2 SP in artificial human saliva.
Autori: | ||
Data di pubblicazione: | 2022 | |
Titolo: | Controlled, partially exfoliated, self-supported functionalized flexible graphitic carbon foil for ultrasensitive detection of SARS-CoV-2 spike protein | |
Rivista: | SENSORS AND ACTUATORS. B, CHEMICAL | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.snb.2022.131591 | |
Volume: | 359 | |
Appare nelle tipologie: | 2.1 Articolo su rivista |