We investigate an optimization problem governed by an elliptic partial differential equation with uncertain parameters. We introduce a robust optimization framework that accounts for uncertain model parameters. The resulting nonlinear optimization problem has a bilevel structure due to the min-max formulation. To approximate the worst case in the optimization problem, we propose linear and quadratic approximations. However, this approach still turns out to be very expensive; therefore, we propose an adaptive model order reduction technique which avoids long offline stages and provides a certified reduced order surrogate model for the parametrized PDE which is then utilized in the numerical optimization. Numerical results are presented to validate the presented approach.
A certified model reduction approach for robust parameter optimization with PDE constraints
Alla A.;
2019-01-01
Abstract
We investigate an optimization problem governed by an elliptic partial differential equation with uncertain parameters. We introduce a robust optimization framework that accounts for uncertain model parameters. The resulting nonlinear optimization problem has a bilevel structure due to the min-max formulation. To approximate the worst case in the optimization problem, we propose linear and quadratic approximations. However, this approach still turns out to be very expensive; therefore, we propose an adaptive model order reduction technique which avoids long offline stages and provides a certified reduced order surrogate model for the parametrized PDE which is then utilized in the numerical optimization. Numerical results are presented to validate the presented approach.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.