The present invention concerns a novel method to efficiently score documents (texts, images, audios, videos, and any other information file) by using a machine-learned ranking function modeled by an additive ensemble of regression trees. A main contribution is a new representation of the tree ensemble based on bitvectors, where the tree traversal, aimed to detect the leaves that contribute to the final scoring of a document, is performed through efficient logical bitwise operations. In addition, the traversal is not performed one tree after another, as one would expect, but it is interleaved, feature by feature, over the whole tree ensemble. Tests conducted on publicly available LtR datasets confirm unprecedented speedups (up to 6.5×) over the best state-of-the-art methods.

Method to rank documents by a computer, using additive ensembles of regression trees and cache optimisation, and search engine using such a method

Claudio Lucchese
Membro del Collaboration Group
;
Salvatore Orlando
Membro del Collaboration Group
;
2021-01-01

Abstract

The present invention concerns a novel method to efficiently score documents (texts, images, audios, videos, and any other information file) by using a machine-learned ranking function modeled by an additive ensemble of regression trees. A main contribution is a new representation of the tree ensemble based on bitvectors, where the tree traversal, aimed to detect the leaves that contribute to the final scoring of a document, is performed through efficient logical bitwise operations. In addition, the traversal is not performed one tree after another, as one would expect, but it is interleaved, feature by feature, over the whole tree ensemble. Tests conducted on publicly available LtR datasets confirm unprecedented speedups (up to 6.5×) over the best state-of-the-art methods.
2021
File in questo prodotto:
File Dimensione Formato  
US11106685.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3745892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact