The present work is focused on the improvement of an effective approach to tailor the acidity of silica alumina composite. SBA-15 was selected based on high surface area, uniform porosity and large mesopores. Modification of SBA-15 was performed to improve both Lewis and Brønsted acidities and hence catalyst activity. Therefore, introduction of alumina as a co-catalyst was carried out to enhance Lewis acid sites through its incorporation into the silica network. Evaporation impregnation method was evaluated for incorporation of aluminium to SBA-15 and materials with different SiO2/Al2O3 ratios were prepared. Acidity and morphological features of the materials were assessed using XRD, EDX, SEM, TEM, N2-physisorption, 27Al MAS-NMR and FTIR with pyridine. Brønsted acidity was attained by the introduction of sulfonic acid groups in the final catalyst via the post-synthesis grafting method. Therefore, the balanced Lewis and Brønsted acidities and proper porosity of modified SBA-15 led to its efficient performance in the conversion of glucose as a biomass-based model component to levulinic acid.
Acid sites modulation of siliceous-based mesoporous material by post synthesis methods
Pizzolitto C.;Ghedini E.;Taghavi S.;Menegazzo F.;Signoretto M.
2021-01-01
Abstract
The present work is focused on the improvement of an effective approach to tailor the acidity of silica alumina composite. SBA-15 was selected based on high surface area, uniform porosity and large mesopores. Modification of SBA-15 was performed to improve both Lewis and Brønsted acidities and hence catalyst activity. Therefore, introduction of alumina as a co-catalyst was carried out to enhance Lewis acid sites through its incorporation into the silica network. Evaporation impregnation method was evaluated for incorporation of aluminium to SBA-15 and materials with different SiO2/Al2O3 ratios were prepared. Acidity and morphological features of the materials were assessed using XRD, EDX, SEM, TEM, N2-physisorption, 27Al MAS-NMR and FTIR with pyridine. Brønsted acidity was attained by the introduction of sulfonic acid groups in the final catalyst via the post-synthesis grafting method. Therefore, the balanced Lewis and Brønsted acidities and proper porosity of modified SBA-15 led to its efficient performance in the conversion of glucose as a biomass-based model component to levulinic acid.File | Dimensione | Formato | |
---|---|---|---|
rev manuscript MMM.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Accesso chiuso-personale
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.