As is well known, by the Floquet-Bloch theory for periodic problems, one can transform a spectral Laplace-Dirichlet problem in the plane with a set of periodic perforations into a family of “model problems” depending on a parameter n (Formula presented) [0,2π]2 for quasiperiodic functions in the unit cell with a single perforation. We prove real analyticity results for the eigenvalues of the model problems upon perturbation of the shape of the perforation of the unit cell.

A REAL ANALYTICITY RESULT FOR SYMMETRIC FUNCTIONS OF THE EIGENVALUES OF A QUASIPERIODIC SPECTRAL PROBLEM FOR THE DIRICHLET LAPLACIAN

Musolino P.;
2021-01-01

Abstract

As is well known, by the Floquet-Bloch theory for periodic problems, one can transform a spectral Laplace-Dirichlet problem in the plane with a set of periodic perforations into a family of “model problems” depending on a parameter n (Formula presented) [0,2π]2 for quasiperiodic functions in the unit cell with a single perforation. We prove real analyticity results for the eigenvalues of the model problems upon perturbation of the shape of the perforation of the unit cell.
File in questo prodotto:
File Dimensione Formato  
20210214_LaMuTa_jotart.pdf

non disponibili

Descrizione: Versione post print
Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3744854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact